
EE 330

Lecture 4

• Yield

• Statistics Review



Feature Size

Feature size is the minimum lateral feature 

size that can be reliably manufactured

Often given as either 

feature size or pitch

Minimum feature size often 

identical for different features

feature 

p
it
c
h spacing 

Extremely challenging to 

decrease minimum feature 

size in a new process

Review from last lecture:



What is meant by “reliably”

Yield is acceptable if circuit performs as 

designed even when a very large number 

of these features are made

If P is the probability that a feature is good

n is the number of uncorrelated features on an IC

Y is the yield

nPY =

n

Yloge

eP =

Review from last lecture:



MOS Transistor

Gate

Source Drain

Weff Leff

Effective Width and Length Generally 

Smaller than Drawn Width and Length

Review from last lecture:



Physical Characteristics of Key 

Semiconductor Materials
o

A7.2
o

A4.5

o

A5.3

Silicon:  Average Atom Spacing 

Lattice Constant

SiO2
Average Atom Spacing

Breakdown Voltage

20KV/cmAir

0

A10mV/to510MV/cmto5 =

Physical size of atoms and molecules place fundamental 

limit on conventional scaling approaches

Review from last lecture:



Defects in a Wafer

Defect

•  Dust particles and other undesirable 

processes cause defects

•  Defects in manufacturing cause yield loss

Review from last lecture:



Hard Fault Model

Ad

H eY −=

YH is the probability that the die does not have a hard fault

A is the die area

d is the defect density

 (for some older processes, typically 1cm-2 < d < 2cm-2)

 for some newer processes, typically  0.1cm-2<d<1cm-2) 

Industry often closely guards the value of d for their process

Other models, which may be better, have the same general functional form

Review from last lecture:



Soft Fault Model

( )=
MAX

MIN

X

X

SOFT dxxfP

PSOFT is the soft fault yield

f(x) is the probability density function of the parameter of interest

XMIN and XMAX define the acceptable range of the parameter of interest

Some circuits may have several parameters that must meet 

performance requirements

XMIN
XMAX

Review from last lecture:



Soft Fault Model

If there are k parameters that must meet parametric 

performance requirements and if the random variables 

characterizing these parameters are uncorrelated, then the 

soft yield is given by


=

=
k

1j

SOFTS j
PY

Review from last lecture:



Overall Yield

If both hard and soft faults affect the yield of 

a circuit, the overall yield is given by the 

expression

SHYYY =

Review from last lecture:



Cost Per Good Die

The manufacturing costs per good die is given by

Y

C
C FabDie
Good =

where CFabDie is the manufacturing costs of a fab die and Y is the yield

There are other costs that must ultimately be included such as testing 

costs, engineering costs, packaging costs,  etc.

Review from last lecture:



Do you like statistics ?



Statistics are Real!

Statistics govern what really 

happens throughout much of the 

engineering field!

Statistics are your Friend  !!!!
You might as well know what will happen since statistics characterize what 

WILL happen in the presence of variability in many processes !



Statistics Review

f(x) = Probability Density Function for x

Assume x is a random variable of interest

F(x) = Cumulative Density Function for x

( ) 1=


−=

dx xf
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Statistics Review

  ( )
1X

1

x 

P x x f x  dx
=−

 = 

f(x) = Probability Density Function for x

F(x) = Cumulative Density Function for x

  ( )11 XFXxP =

x
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Statistics Review

  ( )dx xfXxXP
2

1

X

 X

21 =

f(x) = Probability Density Function for x

F(x) = Cumulative Density Function for x
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Statistics Review

y

fN

x

f

( ) 1N

y 

f y  dy

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y

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=

( ),x N  

( )0,1y N

Theorem 1:  If the random variable x is normally distributed with mean µ and 

standard deviation σ, then                    is also a random variable that is normally 

distributed with mean 0 and standard deviation of 1.  


−
=

x
y

(Normal Distribution and Gaussian Distribution are the same)



Statistics Review



−
=

x
y

x

f

µ µ+σ

( ),x N  

The random part of many parameters of microelectronic circuits is often 

assumed to be Normally distributed and experimental observations confirm that 

this assumption provides close agreement between theoretical and experimental 

results

The mapping                                    is often used to simplify the statistical 

characterization of the random parameters in microelectronic circuits 

x generally is dimensioned,  y is dimensionless



Statistics Review



−
=

x
y

x

f

µ µ+σ

( ),x N  

Example:

x might be the frequency of oscillation of a ring oscillator used for a clock in 

a crystal-less digital circuit, x Gaussian (Normal) 

Dimensions of x :  Hz

Maybe µ=550 MHz    σ=50 MHz

is dimensionless with µy=0   σy=1

y:     N(0,1)



Statistics Review



−
=

x
y

x

f

µ µ+σ

( ),x N  

Example:

x might be the offset voltage of an op amp, x Gaussian (Normal) 

Dimensions of x :  Volts

Typically  µ=0V    σ=10 mV

is dimensionless with µy=0   σy=1

y:     N(0,1)



Background Information

Theorem 2:  If x is a Normal (Gaussian) random variable with mean μ and 

standard deviation σ, then  the probability that x is between x1 and x2 is given 

by 

( ) ( )n 
2 2n

1 1n

x x

x x

p = f x dx = f x dx

x

f

x1 x2

and1 2
1n 2n

x  - μ x  - μ
x = x =

σ σ
where

and where  fn(x) is N(0,1)



Background Information

x

f

x1 x2

xn

fn

0
x1n x2n



Background Information

( )
2n

1n

x

n
x

p f x dx= 

Observation:  The probability that the N(0,1) random variable xn satisfies the 

relationship x1n<xn<x2n is also given by

where Fn(x) is the CDF of  xn. 

xn

fn

0
x1n x2n

( )n 2n n 1np F x F x( )= −

Since the N(0,1) distribution is symmetric around 0, p can also be expressed as 

( ) ( )n 2n n 1np F x 1 F x( )= − − −



Background Information

Observation:  In many electronic circuits, a random variable of interest, x, is 0 

mean Gaussian and the probabilities of interest are characterized by a region 

defined by the magnitude of the random variable (i.e. –x1< x < x1).  

In these cases, if we define

( ) ( ) ( ) ( ) ( )
1 1n

1 1n

x x

1 1 n n 1n n 1n
x x

p x x x f x dx f x dx F x F x
− −

−   = = = − − 

( ) ( )n 1n n 1nF x 1 F x− = −

therefore: ( )n 1np 2F x 1= −

x - 0
x  = 


N

But for the N(0,1) distribution

x

f

0-x1 x1

xN

fn

-x1N 0 x1N

x - 0
x  = 


N

0, = 

then xN is N(0,1)  and



Background Information

( )n 1np 2F x 1= −
xN

fn

-x1N 0 x1N

( )n 2n n 1np F x F x( )= −

xn

fn

0
x1n x2n

Regardless of whether Gaussian performance requirements are asymmetric or 

symmetric, the CDF of the N(0,1) distribution  (i.e. Fn(xn))  can be used to characterize 

yield 



Background Information

Tables of the CDF of the N(0,1) random variable are readily available.  It is 

also available in Matlab, Excel, and a host of other sources.  

http://www.math.unb.ca/~knight/utility/NormTble.htm



Background Information

Tables of the CDF of the N(0,1) random variable are readily available.  It is 

also available in Matlab, Excel, and a host of other sources.  



Background Information

Example:  Determine the probability that the N(0,1) random variable has 

magnitude less than 2.6

x

f

-2.6 2.60

( )np 2F 2 6 1.= −

From the table of the CDF,  Fn(2.6) = 0.9953   so  p=.9906  



Background Information

VOFF

• Offset voltage of op amp can be modeled as a dc voltage source in series 

with input

• Offset voltage is a random variable – usually zero mean and Gaussian

• Often characterized by its standard deviation

• Designer has control of offset through architecture and device sizing

• Invariably low offset voltages require large area



Background Information

VOFF

Offset Voltage:

But read the fine print !



Background Information

VOFF

Offset Voltage:

At manufacture, VOFF is a random variable and the TL081M has been 

sorted at test to cut off tails beyond 9mV



Example:  Determine the soft yield of an operational  amplifier that has an 

offset voltage requirement of 5mV if the offset voltage has a Gaussian 

distribution with a standard deviation of 2.5mV and a mean of  0V.

x

f

5mV0-5mV

( ) ( ) ( ) ( )
2

N N N N
-2

p = f x dx = F 2 - F -2 =2 F 2 -1

y

fN

-2 20

x - 0mV
y = 

2.5mV

( )Np = 2 F 2 -1 

0mV

2.5mV

 =

 =



Background Information

http://www.math.unb.ca/~knight/utility/NormTble.htm

Example (continued)



Background Information

Determine the soft yield of an operational  amplifier that has an offset voltage 

requirement of 5mV if the offset voltage has a Gaussian distribution with a 

standard deviation of 2.5mV and a mean of  0V.

x

f

5mV0-5mV

y

fN

-2 20

x-0
y = 

2.5mV

p = 2 .9772-1 = .9544

( )NF 2 =0.9772

( )Np = 2 F 2 -1 

Example (continued)

95.4%SOFTY =



Background Information

Example:  Determine the soft yield of an operational  amplifier that has an 

offset voltage requirement of 5mV if the offset voltage has a Gaussian 

distribution with a standard deviation of 3.5mV and a mean of  0V.

x

f

5mV0-5mV

( ) ( ) ( ) ( )
1.43

N N N N
-1.43

p = f x dx = F 1.43 - F -1.43 =2 F 1.43 -1

y

fN

-1.43 1.430

x - 0mV
y = 

3.5mV

( )Np = 2 F 1.43 -1 

0mV

3.5mV

 =

 =

Repeat the previous example if the designer decided to reduce the area so that the 

standard deviation increased to 3.5 mV 



Background Information

http://www.math.unb.ca/~knight/utility/NormTble.htm

Example (continued)



Background Information

Example:  Determine the soft yield of an operational  amplifier that has an 

offset voltage requirement of 5mV if the offset voltage has a Gaussian 

distribution with a standard deviation of 3.5mV and a mean of  0V.

x

f

5mV0-5mV
y

fN

-1.43 1.430

x - 0mV
y = 

3.5mV

( ) 0 9236Np = 2 F 1.43 -1 =2 . -1=0.847 

0mV

3.5mV

 =

 =

Repeat the previous example if the designer decided to reduce the area so that the 

standard deviation increased to 3.5 mV 

This small change in the design dropped the yield from just over 95% to just 

under 85% 

Statistical analysis is critical for predicting performance capabilities of many ICs  ! 



Many Companies Promote the Real 

Six-Sigma Challenge

Six Sigma (6σ) is a set of techniques and tools for process improvement. It 

was introduced by American engineer Bill Smith while working at Motorola in 

1986.[1][2] A six sigma process is one in which 99.99966% of all opportunities to 

produce some feature of a part are statistically expected to be free of defects.

From Wikipedia   Sept 1  2021

https://en.wikipedia.org/wiki/Bill_Smith_(Motorola_engineer)
https://en.wikipedia.org/wiki/Motorola
https://en.wikipedia.org/wiki/Six_Sigma#cite_note-ssorigin-1
https://en.wikipedia.org/wiki/Six_Sigma#cite_note-Tennant6-2


Many Companies Promote the Real 

Six-Sigma Challenge

From Wikipedia   Sept 1  2021

In 2005 Motorola attributed over $17 billion in savings to Six Sigma.[3]

By the late 1990s, about two-thirds of the Fortune 500 organizations had begun 

Six Sigma initiatives with the aim of reducing costs and improving quality.[6]

https://en.wikipedia.org/wiki/Six_Sigma#cite_note-motsaving-3
https://en.wikipedia.org/wiki/Fortune_500
https://en.wikipedia.org/wiki/Six_Sigma#cite_note-Juran-6


Yield at the Six-Sigma level 

6-6

( ) 162FY N6sigma −=

(Assume a Gaussian distribution)

Y6sigma=0.9999999980

This is approximately 2 defects out of 1 billion parts



Yield at the Six-Sigma level 

6-6

This is approximately 2 defects out of 1 billion parts

Would producing ICs with a yield at the six-sigma level be a good goal?

How about smart phones with defects at this level? (approx. 1.4B sold in 2020)   

How about automobiles?  (approx. 78 million produced in 2020)



Six-Sigma or Else !!
How serious is the “or Else” in the six-sigma programs?



It is assumed that the performance or yield will drop, for some reason, by 

1.5 sigma after a process has been established

Initial  “six-sigma” solutions really expect only 4.5 sigma performance in 

steady-state production

4.5 sigma performance  corresponds to  3.4 defects in a million

Six-Sigma 

or Else !!

Observation:  Any  Normally distributed random variable can be mapped to a 

N(0,1) random variable by subtracting the mean and dividing by the variance

Assumption :  Processes of interest are Gaussian (Normal) 



Meeting the Real Six-Sigma 

Challenge

Six-Sigma 

or Else !!

Highly Statistical Concept !



The Six-Sigma Challenge

Long-term Capability Short-term Capability

Tails are 6.8 parts in a million Tail is 2 parts in a billion

Two-sided capability:

Six Sigma Performance is Very Good !!!

x

f

4.5σ-4.5σ

x

6σ0

f

-6σ



Example:  Determine the maximum die area if the circuit 

yield is to initially meet the “six sigma” challenge for hard 

yield defects (Assume a defect density of 1cm-2 and only 

hard yield loss).  Is it realistic to set six-sigma die yield 

expectations on the design and process engineers?

Solution:

6-6

The “six-sigma” challenge

requires meeting a 6 

standard deviation yield with 

a Normal (0,1) distribution

( ) 162FY N6sigma −=

FN(6)=0.9999999980Recall:  

6sigmaY 0.999999996=



Solution cont:

Ad

H eY −=
( )
d

Yln
A H−
=

( ) o
2 2

-2

ln .9999999980
A 4.0E 9cm 40E6(A)

1cm

−
= = − =

This is  comparable to the area required to fabricate about 100 minimum-

sized transistors in a state of the art 20nm process

200Å
Consider a 20nm process with 

10x  area  overhead

( )
2 2 2A 10 * 200 ( ) 4 5( )= =

o o

TRAN A E A

o
2

o
2

40E6 A
n 100

4E5 A

( )

( )

= =

6300A



Solution cont:

Is it realistic to set six-sigma die hard yield 

expectations on the design and process engineers?

The best technologies in the world have orders of 

magnitude too many  defects to build any useful 

integrated circuits with die yields that meet six-sigma 

performance requirements !!

Arbitrarily setting six-sigma design 

requirements will guarantee financial disaster !!



Meeting the Real Six-Sigma 

Challenge

Six-Sigma 

or Else !!



Meeting the Real Six-Sigma 

Challenge

Six-Sigma 

or Else !!

Improving a yield by even one sigma often is 

VERY challenging !!



Meeting the Real Six-Sigma Challenge

Six-Sigma 

or Else !!

So, how has Motorola prospered with “meeting” the 6-

sigma challenge?



Meeting the Real Six-Sigma 

Challenge

Six-Sigma 

or Else !!

How has Motorola fared with the 6-sigma approach?

Motorola, Inc. (pronounced ) was an American multinational6 telecommunications 

company based in Schaumburg, Illinois, which was eventually divided into two 

independent public companies, Motorola Mobility and Motorola Solutions on January 

4, 2011, after losing $4.3 billion from 2007 to 2009.7 

http://en.wikipedia.org/wiki/Multinational_corporation
http://en.wikipedia.org/wiki/Schaumburg,_Illinois
http://en.wikipedia.org/wiki/Motorola_Mobility
http://en.wikipedia.org/wiki/Motorola_Solutions


Meeting the Real Six-Sigma 

Challenge

How has Motorola fared with the 6-sigma approach?

• Sold military activities to General Dynamics 2000/2001

• Sold automotive products in 2006

• Spun off discrete components as ON semiconductor in 1999

• Spun off SPS as Freescale in 2003 (acquired by NXP in 2015)

• Sold Motorola Mobility to Google in 2011 (acquired by Lenovo in 2014)

• Motorola Solutions  has 10,000 employees, down from over 150,000 at peak

• Late 90’s major competitor of Intel on microprocessors

• World leader in cell phones for a number of years

• Peaked at 150,000 employees

• ………



Example:   This was part of an article that appeared on Jan 26, 2022.  

The content of the article is not relevant but rather it serves as an 

example of use of statistics in our society

Is this an abuse of statistics? 



Statistics can be abused !

Many that are not knowledgeable 

incorrectly use statistics

Many use statistics to intentionally 

mislead the public

Some openly abuse statistics for financial 

gain or for manipulation purposes

Keep an open mind to separate “good” 

statistics from  “abused” statistics



Meeting the Real Six-Sigma 

Challenge

Six-Sigma 

or Else !!

Six-sigma capability has almost nothing to do with optimizing profits and, if taken 

seriously, will likely guarantee a financial fiasco in most manufacturing processes  



Meeting the real Six-Sigma 

Challenge

Six-Sigma 

or Else !!

Actually optimizing a 

process to six-sigma 

performance will almost 

always guarantee 

financial disaster!



Meeting the real Six-Sigma 

Challenge

Six-Sigma 

or Else !!



Meeting the real Six-Sigma 

Challenge

Six-Sigma 

or Else !!

The concept of improving 

reliability (really profitability) is 

good – its just the statistics that 

are abused!



Meeting the real Six-Sigma 

Challenge

Six-Sigma 

or Else !!

I got the 

message



Yield 

Variance

Earnings

Per Die

0

6σ

L
o

s
s

P
ro

fi
t

-∞

4.5σ

Six-Sigma 

or Else !!

The Perception



Six-Sigma 

or Else !!

The Reality

Earnings/

Die

0

L
o

s
s

P
ro

fi
t

- 
6σ

Yield 

Variance

4.5σ

• Designing for 4.5σ or 6σ yield variance will almost always guarantee large losses

• Yield targets should be established to optimize earnings not yield variance



The Perception on Yield

Perception is often that goal should be to get yields as close to 100% as possible

Yield

Earnings/

Die

0

100%

L
o

s
s

P
ro

fi
t

-∞



The Reality about Yield

• Return on improving yield when yield is above 95% is small

• Inflection point could be at 99% or higher for some designs but below 50% 

for others

• Cost/good die will ultimately go to ∞ as yield approaches 100%

100%80%

CMIN

1.2 CMIN

Cost Per 

Good Die

Yield

Designers goal should be to optimize profit, not an arbitrary yield target  



Stay Safe and Stay Healthy !



End of Lecture 4
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